hg19 CCDS Gene
 

Consensus CDS Gene CCDS31408.1

GeneCNGA4
Descriptioncyclic nucleotide-gated cation channel alpha-4
SequencesCDS,  protein,  genomic
CCDS database CCDS31408.1

Associated Sequences

 mRNAProtein
UCSC Genesuc001mco.3 
RefSeqNM_001037329.3 NP_001032406.1
VegaOTTHUMT00000383765 OTTHUMP00000229567
EnsemblENST00000379936 ENSP00000369268
MGCBC160170 

Note: mRNA and protein sequences in other gene collections may differ from the CCDS sequences.


RefSeq summary of CCDS31408.1

CNGA4 is a modulatory subunit of vertebrate cyclic nucleotide-gated membrane channels that transduce odorant signals (Munger et al., 2001 [PubMed 11739959]).[supplied by OMIM, Mar 2008]. Sequence Note: This RefSeq record was created from transcript and genomic sequence data to make the sequence consistent with the reference genome assembly. The genomic coordinates used for the transcript record were based on transcript alignments.


Data schema/format description and download

Go to CCDS track controls

Data last updated at UCSC: 2019-10-03

Description

This track shows human genome high-confidence gene annotations from the Consensus Coding Sequence (CCDS) project. This project is a collaborative effort to identify a core set of human protein-coding regions that are consistently annotated and of high quality. The long-term goal is to support convergence towards a standard set of gene annotations on the human genome.

Collaborators include:

For more information on the different gene tracks, see our Genes FAQ.

Methods

CDS annotations of the human genome were obtained from two sources: NCBI RefSeq and a union of the gene annotations from Ensembl and Vega, collectively known as Hinxton.

Genes with identical CDS genomic coordinates in both sets become CCDS candidates. The genes undergo a quality evaluation, which must be approved by all collaborators. The following criteria are currently used to assess each gene:

  • an initiating ATG (Exception: a non-ATG translation start codon is annotated if it has sufficient experimental support), a valid stop codon, and no in-frame stop codons (Exception: selenoproteins, which contain a TGA codon that is known to be translated to a selenocysteine instead of functioning as a stop codon)
  • ability to be translated from the genome reference sequence without frameshifts
  • recognizable splicing sites
  • no intersection with putative pseudogene predictions
  • supporting transcripts and protein homology
  • conservation evidence with other species

A unique CCDS ID is assigned to the CCDS, which links together all gene annotations with the same CDS. CCDS gene annotations are under continuous review, with periodic updates to this track.

Credits

This track was produced at UCSC from data downloaded from the CCDS project web site.

References

Hubbard T, Barker D, Birney E, Cameron G, Chen Y, Clark L, Cox T, Cuff J, Curwen V, Down T et al. The Ensembl genome database project. Nucleic Acids Res. 2002 Jan 1;30(1):38-41. PMID: 11752248; PMC: PMC99161

Pruitt KD, Harrow J, Harte RA, Wallin C, Diekhans M, Maglott DR, Searle S, Farrell CM, Loveland JE, Ruef BJ et al. The consensus coding sequence (CCDS) project: Identifying a common protein-coding gene set for the human and mouse genomes. Genome Res. 2009 Jul;19(7):1316-23. PMID: 19498102; PMC: PMC2704439

Pruitt KD, Tatusova T, Maglott DR. NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 2005 Jan 1;33(Database issue):D501-4. PMID: 15608248; PMC: PMC539979